GESIS - DBK - ZA6803
 

ZA6803: Rolling Cross-Section Campaign Survey with Post-election Panel Wave (GLES 2017)

Downloads and Data Access


On this page you find the complete metadata and an overview of all available data sets and documents for the requested study. The download of all files is possible from our central search page under the following link:
ZA6803 Downloads and Data Access

List of Files

List of Files
 

Datasets

  • ZA6803_missing.do (Dataset) 2 KBytes
  • ZA6803_v4-0-1.dta (Dataset Stata) 8 MBytes
  • ZA6803_v4-0-1.sav (Dataset SPSS) 10 MBytes
  • ZA6803_v4-0-1_en.dta (Dataset Stata) 8 MBytes
  • ZA6803_v4-0-1_en.sav (Dataset SPSS) 10 MBytes
  • ZA6803_v4-0-1_open-ended.csv (Dataset) 773 KBytes

Questionnaires

  • ZA6803_fb.pdf (Questionnaire) 1005 KBytes
  • ZA6803_q.pdf (Questionnaire) 993 KBytes

Other Documents

  • ZA6800ff_GLES2017_Doku_insgesamt.zip (Codeplan) 705 KBytes
  • ZA6803_sb.pdf (Study Description) 786 KBytes
Availability Availability A - Data and documents are released for academic research and teaching.
Download of Data and Documents Download of Data and Documents All downloads from this catalogue are free of charge. Data-sets available under access categories B and C must be ordered via the shopping cart with a few exceptions. Charges apply! Please respect our Terms of use.


Bibliographic Citation

Citation Citation GLES (2019): Rolling Cross-Section Campaign Survey with Post-election Panel Wave (GLES 2017). GESIS Data Archive, Cologne. ZA6803 Data file Version 4.0.1, https://doi.org/10.4232/1.13213
Study No.ZA6803
TitleRolling Cross-Section Campaign Survey with Post-election Panel Wave (GLES 2017)
Current Version4.0.1, 2019-2-4, https://doi.org/10.4232/1.13213
Date of Collection24.07.2017 - 12.11.2017
Principal Investigator/ Authoring Entity, Institution
  • Roßteutscher, Sigrid - Universität Frankfurt
  • Schmitt-Beck, Rüdiger - Universität Mannheim
  • Schoen, Harald - Universität Mannheim
  • Weßels, Bernhard - Wissenschaftszentrum Berlin für Sozialforschung
  • Wolf, Christof - GESIS - Leibniz-Institut für Sozialwissenschaften
Contributor, Institution, Role
  • Schmitt-Beck, Rüdiger - Universität Mannheim - ProjectLeader
  • Staudt, Alexander - Universität Mannheim - ProjectManager
  • Chalupa, Julia - GESIS - Leibniz-Institut für Sozialwissenschaften - DataCurator
  • Glinitzer, Konstantin - GESIS - Leibniz-Institut für Sozialwissenschaften - DataCurator
  • Kaukal, Malte - GESIS - Leibniz-Institut für Sozialwissenschaften - DataCurator

Methodology

Geographic Coverage
  • Germany (DE)
UniverseThe population comprises all German-speaking persons living in a private household with at least one landline or mobile phone in the Federal Republic of Germany, who are eligible to vote in the federal election of 2017.
Analysis Unit Analysis Unit
  • Individual
Sampling Procedure Sampling Procedure
  • Probability: Stratified: Proportional
Mode of Collection Mode of Collection
  • Telephone interview: Computer-assisted (CATI)
Time Method Time Method
  • Cross-section
Kind of Data Kind of Data
  • Numeric
  • Text
Data CollectorIPSOS
Date of Collection
  • 24.07.2017 - 12.11.2017

Errata & Versions

VersionDate, Name, DOI
4.0.1 (current version)2019-2-4 Release4-0-1 https://doi.org/10.4232/1.13213
4.0.02018-9-10 Release4-0-0 https://doi.org/10.4232/1.13134
3.0.12018-6-25 Release3-0-1 https://doi.org/10.4232/1.13051
3.0.02018-5-30 Release3-0-0 https://doi.org/10.4232/1.13041
2.0.02018-3-12 Release2-0-0 https://doi.org/10.4232/1.12998
1.0.02017-12-13 first archive edition https://doi.org/10.4232/1.12941
Errata in current version
none
Version changes
Changes between version 4.0.1 and it's previous version
DateSubjectDescriptionCorrection Description
2019-2-5Variables „elecdist“, „elecdist_1“ - „elecdist_5“ and „elecdist_flag“ have been renamed to „elecdist17“, „elecdist17_1“ – „elecdist17_5“ and „elecdist17_flag“.2019-2-5
2019-2-5English versions of the dataset and the questionnaire have been added.2019-2-5
Changes between version 4.0.0 and it's previous version
DateSubjectDescriptionCorrection Description
2018-9-10Technic variables "generiert" and "pre_termin" have been added.2018-9-10
2018-9-10The marginal distributions of the weighting variables have been adjusted to the German micro census 2017.2018-9-10
2018-9-10The variable "bik10" has been removed due to data protection.2018-9-10
2018-9-10Editorial adjustments in variables "pos004a", "pos004b" and "elecdist"2018-9-10
Changes between version 3.0.1 and it's previous version
DateSubjectDescriptionCorrection Description
2018-6-25Missing value labels were added for variables pre073, pre074, pos013a, pos013b, and pos056a.2018-6-25
2018-6-25A typo in the labels of variables pre018a-pre018g has been fixed.2018-6-25
Changes between version 3.0.0 and it's previous version
DateSubjectDescriptionCorrection Description
2018-6-1The constituency coding has been added to the data set (elecdist, elecdist1-elecdist4, elecdist_flag).2018-6-1
2018-6-1The most important problem (MIP) and second MIP coding has been added for the pre- and post-election survey (pre013c1-pre013c5, pre015c1-pre015c5, pos015c1-pos015c5, pos017c1-pos017c5).2018-6-1
2018-6-1Post-stratification weights have been recalculated based on the marginal distributions from the German micro census 2016.2018-6-1
2018-6-1False variable labels in pre005 and pre007 have been fixed (the labels referred to first vote instead of second vote).2018-6-1
2018-6-1The tagnr variable has been converted from a string variable to a numeric variable.2018-6-1
Changes between version 2.0.0 and it's previous version
DateSubjectDescriptionCorrection Description
2018-3-12A panel weight has been added to the dataset.2018-3-12
2018-3-12Due to data protection provisions, answers to the questions about the most important and second most important political problem have been removed temporarily from the data set.2018-3-12
2018-3-12A coding error in the variable ostwest has been corrected.2018-3-12

Further Remarks

Number of Units: 7650
Number of Variables: 670
Analysis System(s): SPSS, Stata

Publications

Relevant full texts
from SSOAR (automatically assigned)

Groups

Research Data Centre
Groups
  •  German Longitudinal Election Study (GLES)
    The German Longitudinal Election Study (GLES) is a DFG-funded project which made its debut just prior to the 2009 federal election. GLES is the largest and most ambitious election study held so far in Germany. Although the initial mandate is to examine and analyse the electorate for three consecutive elections, the aspired goal is to integrate the project within GESIS as an institutionalized election study after the federal election of 2017, and hence to make it a permanent study.