GESIS - DBK - ZA5710

ZA5710: TV Debate Analysis, Content Analysis (GLES 2013)

Downloads and Data Access

On this page you find the complete metadata and an overview of all available data sets and documents for the requested study. The download of all files is possible from our central search page under the following link:
ZA5710 Downloads and Data Access

List of Files

List of Files


  • (Dataset) 2 KBytes
  • ZA5710_v2-2-0.dta (Dataset Stata) 121 KBytes
  • ZA5710_v2-2-0.sav (Dataset SPSS) 162 KBytes
  • ZA5710_v2-2-0_open-ended.csv (Dataset) 114 KBytes


  • ZA5710_cod.pdf (Codebook) 540 KBytes

Other Documents

  • ZA5709-12_sb.pdf (Study Description) 593 KBytes
  • ZA5710_Transkript.pdf (Other Document) 808 KBytes
Availability Availability A - Data and documents are released for academic research and teaching.
Download of Data and Documents Download of Data and Documents All downloads from this catalogue are free of charge. Data-sets available under access categories B and C must be ordered via the shopping cart with a few exceptions. Charges apply! Please respect our Terms of use.

Bibliographic Citation

Citation Citation GLES (2018): TV Debate Analysis, Content Analysis (GLES 2013). GESIS Data Archive, Cologne. ZA5710 Data file Version 2.2.0,
Study No.ZA5710
TitleTV Debate Analysis, Content Analysis (GLES 2013)
Current Version2.2.0, 2018-12-12,
Date of Collection01.09.2013 - 01.09.2013
Principal Investigator/ Authoring Entity, Institution
  • Rattinger, Hans - Universität Mannheim
  • Roßteutscher, Sigrid - Universität Frankfurt
  • Schmitt-Beck, Rüdiger - Universität Mannheim
  • Weßels, Bernhard - Wissenschaftszentrum Berlin für Sozialforschung
  • Wolf, Christof - GESIS - Leibniz-Institut für Sozialwissenschaften
Contributor, Institution, Role
  • Faas, Thorsten - Universität Mainz - ProjectLeader
  • Maier, Jürgen - Universität Koblenz-Landau - ProjectLeader
  • Maier, Michaela - Universität Koblenz-Landau - ProjectLeader
  • Blumenberg, Manuela - GESIS - Leibniz-Institut für Sozialwissenschaften - DataCurator
  • Kaukal, Malte - GESIS - Leibniz-Institut für Sozialwissenschaften - DataCurator
  • Kratz, Sophia - GESIS - Leibniz-Institut für Sozialwissenschaften - DataCurator


Topics Topics
  • 9.2 Mass media
  • 11.7 Elections


Geographic Coverage
  • Germany (DE)
UniversePeople eligible to vote at the federal election 2013
Analysis Unit Analysis Unit
  • Text Unit
Sampling Procedure Sampling Procedure
  • Non-probability: Purposive
Mode of Collection Mode of Collection
  • Content coding
Time Method Time Method
  • Longitudinal: Trend/Repeated cross-section
Kind of Data Kind of Data
  • Numeric
  • Text
Data CollectorThis study was conducted by Prof. Dr. Thorsten Faas (Universität Mainz), Prof. Dr. Jürgen Maier (Universität Koblenz-Landau) and Prof. Dr. Michaela Maier (Universität Koblenz-Landau) at Koblenz, Landau/Pfalz und Mainz.
Date of Collection
  • 01.09.2013

Errata & Versions

VersionDate, Name, DOI
2.2.0 (current version)2018-12-12 Release2-2-0
2.1.02017-4-25 Release2-1-0
2.0.02014-12-17 Release2-0-0
1.0.02014-6-13 Release1-0-0
Errata in current version
Version changes
Changes between version 2.2.0 and it's previous version
DateSubjectDescriptionCorrection Description
2018-12-12Recoding of variable v7 for respondents with identifiers v1 = 192, 479 and 4802018-12-12
Changes between version 2.1.0 and it's previous version
DateSubjectDescriptionCorrection Description
2017-4-25Recoding: v4,v6,v8Variable v4, v6 and v8 have been recoded for ID (v1) 318,648,650.2017-4-25
Changes between version 2.0.0 and it's previous version
DateSubjectDescriptionCorrection Description
2014-12-17The value label of code 9 in variable v28 and v35 has been renamed.2014-12-17
2014-12-17The duration of the given statements (v8) was recalculated completely. Thus, several time points in minutes of the statements (v6) have been corrected.2014-12-17
2014-12-17Several statements have been recoded in aspect of the strategy (v12), regarding speaker (v12) and the type of statement (v33).2014-12-17

Further Remarks

Number of Units: 877
Number of Variables: 37
Analysis System(s): SPSS, Stata


Relevant full texts
from SSOAR (automatically assigned)


Research Data Centre
  •  German Longitudinal Election Study (GLES)
    The German Longitudinal Election Study (GLES) is a DFG-funded project which made its debut just prior to the 2009 federal election. GLES is the largest and most ambitious election study held so far in Germany. Although the initial mandate is to examine and analyse the electorate for three consecutive elections, the aspired goal is to integrate the project within GESIS as an institutionalized election study after the federal election of 2017, and hence to make it a permanent study.